

Reg. No.:												
-----------	--	--	--	--	--	--	--	--	--	--	--	--

Question Paper Code: X20450

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2020 AND APRIL/MAY 2021

Fifth/Sixth Semester

Electronics and Communication Engineering EC 6502 – PRINCIPLES OF DIGITAL SIGNAL PROCESSING

(Common to Biomedical Engineering, Medical Electronics) (Regulations 2013)

(Common to PTEC 6502 – Principles of Digital Signal Processing for B.E. Part-Time – Fourth Semester – Electronics and Communication Engineering – Regulations 2014)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions

PART - A

 $(10\times2=20 \text{ Marks})$

- 1. What is the relation between DTFT and DFT?
- 2. Compute the DFT of the sequence $x(n) = \{1, -1, 1, -1\}$.
- 3. What is known as prewarping?
- 4. What are the properties of bilinear transformation?
- 5. What is the necessary and sufficient condition for linear phase characteristic in FIR filter?
- 6. What are the advantages of Kaiser Window?
- 7. What does the truncation of data result in?
- 8. List the representations for which truncation error is analyzed.
- 9. What is the need for antialiasing filter?
- 10. If the spectrum of a sequence x(n) is $X(e^{j\omega})$, then what is the spectrum of the signal down sampled by 2?

PART - B

 $(5\times13=65 \text{ Marks})$

(7)

11. a) Derive radix 2 - DIT FFT algorithm and obtain DFT of the sequence $x(n) = \{1, 2, 3, 4, 4, 3, 2, 1\}$ using DIT algorithm.

(OR)

- b) i) Compute IDFT of the sequence $X(K) = \{7, -0.707, -j0.707, -j, 0.707 j0.707, 1, 0.707 + j0.707 j, -0.707 + j0.707\}$ using DIF algorithm. (8)
 - ii) Perform the linear convolution of finite duration sequences $h(n) = \{1, 2\}$ and $x(n) = \{1, 2, -1, 2, 3, -2, -3, -1, 1, 2, -1\}$ by overlap save method. (5)
- 12. a) Design a minimum length linear phase FIR filter to meet the following constraints:

Pass band edge frequency = 2000 Hz

Stop band edge frequency = 5000 Hz

Stop band attenuation > 50 dB and sampling frequency = 20000 Hz.

(OR)

- b) $H(s) = \frac{1}{(s+1)^2 + 4}$, $T_s = 1$ Sec. Convert this analog filter into digital filter by impulse invariance method.
- 13. a) Design a HPF with the following frequency response.

$$H_{d}(e^{j\omega}) = 1 \text{ for } \pi/4 \le |\omega| \le \pi$$
$$= 0 \text{ for } |\omega| \le \pi/4$$

of length N = 11 using Hanning window.

(OR)

b) Determine the coefficients of a linear phase FIR filter of length N = 15 which has a symmetric unit sample response and a frequency response that satisfies the conditions.

$$H(2 \pi k/15) = 1$$
; for $k = 0, 1, 2, 3$
= 0; for $k = 4, 5, 6, 7$

14. a) i) The output of an ADC is applied to a digital filter with system function $H(z) = \frac{0.5z}{z-0.5} \,.$ Find the output noise power from digital filter when input

signal is quantized to have 8 bits.

ii) Prove that $\sum_{n=0}^{\infty} x^{2}(n) = \frac{1}{2\pi j} \oint_{c} x(z)x(z^{-1})z^{-1}dz.$ (6)

X20450 -3-

- b) A digital system is characterized by the difference equation y(n) = 0.9 y(n-1) + x(n) with x(0) = 0 and initial condition y(-1) = 12. Find the dead band of the system. Verify with formula for largest integer.
- 15. a) For the signal x(n), obtain the spectrum of down sampled signal x(Mn) and upsampled signal $x\left(\frac{n}{L}\right)$. (OR)
 - b) Discuss in detail about any two applications of adaptive filtering with a suitable diagram.

16. a) Using bilinear transformation, design a digital IIR filter with Butterworth characteristics to meet the following specifications.

$$\frac{1}{\sqrt{2}} \le |H(\omega)| \le 1, \ 0 \le \omega \le \pi/2$$

$$0<\left|H(\omega)\right|\leq 0.2,\,\frac{3\pi}{4}\leq \omega \leq \pi\;.$$

(OR)

- b) Consider the low pass filter y(n) = ay(n-1) + bx(n), 0 < a < 1. **(4)**
 - i) Determine b, so that |H(0)| = 1. **(4)**
 - ii) Determine the 3-dB bandwidth ω_3 for the normalized filter in part(i).
 - iii) How does the choice of the parameter 'a' affect ω_3 ? **(3)**
 - iv) Repeat parts (i) through (iii) for the high pass filter obtained by choosing -1 < a < 0. **(4)**